
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 1, 63-79 (1981) 

A SIMPLE METHOD TO GENERATE HIGH-ORDER 
ACCURATE CONVECTION OPERATORS FOR EXPLICIT 

SCHEMES BASED ON LINEAR FINITE ELEMENTS 
J.  DONEA AND s. GIULIANI 

Applied Mechanics Division, Joint Research Centre, Commission of the European Communities, Ispra Establishment, 
Italy 

SUMMARY 

A simple method is proposed to generate high-order accurate convection operators for lumped-explicit 
schemes based on linear or multilinear finite elements. The basic idea is to reduce the truncation error 
on the first-order spatial derivatives by exploiting the consistent mass matrix of the finite element 
method in a purely explicit multistep procedure. The effectiveness of the method is demonstrated on 
pure convection problems in one and two dimensions. 
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INTRODUCTION 

For the numerical solution of time-dependent convection dominated problems, conventional 
linear finite elements are much more accurate than standard second-order central difference 
methods. This is a direct consequence of the much improved phase characteristics associated 
with the consistent mass matrix of the finite element method. However, if an explicit scheme 
is chosen for time integration, mass lumping is virtually mandatory and one sacrifices the 
advantage of the consistent mass formulation. The deleterious effect of mass lumping on the 
quality of numerical solutions to pure convection problems has been illustrated in Gresho et 
al.' and DonCa et al.;' the main consequence is an overall phase error which manifests itself 
by the presence of spurious leading and trailing waves. 

Since explicit algorithms may be cost-effective for solving large-scale convection 
dominated problems (see the excellent discussion by Cheng3), it appears worthwhile 
attempting to improve the phase characteristics of lumped-explicit finite element schemes. A 
possible strategy will be discussed in the present paper for the case of the basic isoparametric 
elements, i.e. the bilinear quadrilateral in two dimensions and the trilinear brick in three 
dimensions. 

The poor phase characteristics of lumped-explicit schemes based on linear elements result 
from the severe truncation error on the first-order spatial derivatives introduced by the 
diagonal mass representation. To reduce this truncation error, it is proposed to exploit the 
consistent mass matrix of the finite element method in a purely explicit multistep procedure. 
The first step makes use of the diagonal mass representation to obtain a first approximation 
to the time rate of change of the nodal values of the computed quantity, while the successive 
steps yield improved approximations which are derived on the basis of an explicit use of the 
consistent mass matrix. On a uniform mesh of linear elements, the proposed multistep 
procedure is shown to generate an approximation to the first-order spatial derivative which 
is of order 2n, n designating the number of steps. 
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The effectiveness of the method is demonstrated on pure convection problems in one and 
two dimensions. 

PROPERTIES OF THE SEMI-DISCRETE: CONVECTION EQUATION 

In this section we analyse the properties of the semi-discrete form of the convection equation 
with regard to the possible choices for mass representation: consistent or diagonal. For 
simplicity a uniform mesh of piecewise linear elements is assumed, but the conclusions of the 
analysis are easily extended to the case of linear isoparametric elements in two and three 
dimensions. The works of Krieg and Key" &d Gresho et at.' are the basic guidelines for the 
present discussion. 

To make it possible to compare the solution of the discrete equation to the solution of the 
differential equation, we consider the one-dimensional homogeneous model equation 

q , t +  w , x =  0 (1) 

q ( x ,  0)  = Geikx (2) 

with constant u. If initial conditions are assumed in the form 

the solution of equation (1) is 
q(x ,  t )  = Gei(kx-ot) (3) 

where o = ku is the exact frequency. 

following semi-discrete equation for the nodal value cpj(t): 
On a uniform mesh of piecewise linear finite elements, the Galerkin formulation gives the 

U 
(l+rL)cp;+- (q j+ , -q j - , )=O 

2h (4) 

where h = - 2qj + qi+l. The consistent mass results are obtained with 
r = 116 and the diagonal mass results with r = 0. Assuming a product solution for equation (4) 
in the form 

-xi and Lqj = 

separation of variables leads to the following pair of expressions 

U p (1 + rL) Sj + - ( Sj - Sj-J = 0 2h 

With initial conditions (2), equation (6a) indicates that p is given by 

sin p l p  
1 + 2r(cos p - 1) 

p = -iw (7) 

where p = kh is a dimensionless wave number. The solution of equation (6b) is 

#( t )  = eBt (8) 

and by analogy with the solution (3) to the exact differential equation (1) we rewrite equation 
(8) as 

J/(  t )  = e-izt (9) 
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Figure 1. Ratio of semi-discrete frequency to exact frequency versus nondimensional wave 
number for a piecewise linear spatial approximation (CM: consistent mass; DM2: diagonal 
mass; DM4: 4th-order convection scheme; DM6: 6th-order convection scheme; DMM: inter- 

mediate scheme in equation (35)) 

If follows from equations (7)-(9) that the ratio of the semi-discrete frequency 13 to the exact 
frequency w is given by - 

0 sin PIP 
w 1 + 2r(cos p - 1) 

The dependency of the frequency ratio G/w on the dimensionless wave number p is shown in 
Figure 1 for r = 116 (consistent mass) and for r = 0 (diagonal mass). It appears that both the 
consistent and the diagonal mass representations depress the frequencies. The diagonal mass 
representation exhibits a particularly bad frequency response for intermediate and short 
wavelengths and this explains the poor performances of lumped-explicit schemes based upon 
linear elements in the solution of convection dominated problems. 

HIGH-ORDER APPROXIMATIONS TO THE FIRST-ORDER SPATIAL 
DERIVATIVES 

The deep frequency depression resulting from the diagonal mass representation is the direct 
consequence of a severe truncation error on the first-order spatial derivative. In fact, 
equation (4) with r = 0 indicates the spatial discretization based on piecewise linear elements 
yields a difference approximation to the convective term which is only second-order 
accurate: 
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To improve the frequency response of lumped-explicit schemes based on linear elements, 
higher-order approximations to the first-order spatial derivative should be employed and 
these may easily be generated on using the following multistep explicit procedure which 
exploits the excellent phase characteristics of the consistent mass matrix without requiring its 
inversion: 
-Suppose that the diagonal mass representation has been employed to derive a first 
approximation (p;"' to the time derivative of the nodal values at a given time t .  From 
equation (4) with r = O  we have 

-Now, using the consistent mass representation (equation (4) with r = 116) we write 

and substituting 
a second approximation pi'" for the time derivative at node j in the form 

and by their first approximation values in equation (12) we obtain 

- At this point, we note that a fourth-order accurate approximation to the first-order spatial 
derivative of (p may be obtained by linearly combining the approximations (12) and (14) in 
the form 

(p; = (1 - a)(p;(l)  + a(pJ(2' (15) 

which for a = 213 gives 

It is easily verified that the right-hand side of equation (16) represents a fourth-order 

accurate approximation to 

- If a sixth-order convection scheme is desired, we perform one more step and replace (pi,, 

in equation (13) by the second approximation values in equation (14). This yields a third 
approximation cp ;(3) which reads 

We then combine the three approximations (12), (14) and (17) in the form 

(18) - 1 .(1) 2 .(2)+_8 .(3) 
c P j = i P j  + W j  1scPj 

and the result is 

The right-hand side of equation (19) is an exact representation of (&p/ax), for a sixth-order 
polynomial. 
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- Generalizing the above results, it is concluded that on a uniform mesh of piecewise linear 
elements, the proposed multistep procedure may generate an approximation to the first 
order spatial derivative which is of order 2n, FI being the number of steps. 
- It is also emphasized that the multistep algorithm is of purely explicit nature in the sense 
that it exploits the consistent mass matrix without requiring its inversion. In addition, the 
method can be readily extended to the basic isoparametric elements in two and three 
dimensions. 

FREQUENCY RESPONSE OF THE HIGHER-ORDER SCHEMES 

For the fourth-order accurate scheme in equation (16) the ratio of the semi-discrete 
frequency (3 to the exact frequency w is given by 

(3 4sinp 1 sin2p 
w 3 p  3 2 p  
-=----- 

and it may be noted in Figure 1 that the frequency response is much better than that 
corresponding to the second-order convection operator obtained with the usual diagonal 
mass representation. 

For the sixth-order approximation in equation (19), the frequency ratio is 

(3 3 sinp 3sin2p 1 sin3p 
w 2 p 5 2p l o  3p 

+-- -=----- 

and Figure 1 indicates that a further significant improvement in frequency response is 
obtained with respect to the fourth-order convection scheme. 

Figure 2. Pure advection of a Gaussian wave in one dimension: piecewise linear 
elements and leapfrog explicit time integration (C = 0.1); (a) diagonal mass representa- 

tion; (b) two-step explicit procedure; (c) three-step explicit procedure 
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Figure 2. (Continued). 

To illustrate the extent of improvement in accuracy obtained on using the proposed 
multistep explicit procedure, Figure 2 shows results for the pure advection of a Gaussian 
wave in one dimension. The temporal algorithm is the explicit leapfrog scheme with a 
Courant number C = uAt/h of 0.1, so that time truncation errors are virtually absent. The 
usual diagonal mass representation (second-order convection scheme) produces an important 
phase error which manifests itself by the presence of large spatial oscillations. These spurious 
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effects are already largely attenuated on using a two-step explicit procedure (fourth-order 
convection scheme) and when three steps are employed (sixth-order accurate scheme) the 
Gaussian wave is reproduced with a minimum of spurious oscillations. 

EFFECTS OF EXPLICIT TIlME INTEGRATION 

To be cost-effective, explicit schemes must be operated at larger values of the Courant 
number than in the previous example and one should thus consider the effect of time 
discretization on the frequency response before any final judgement is made on the merits of 
lumped-explicit schemes based on linear elements. 

Consider the time-centred leapfrog explicit scheme 

Jrn+l= Jrn-l + 2AtJr'n (22) 
and apply it to equation (6b) with 6 = -iG. The result is 

Jrn+l + 2i&jAt+" - $"-' = 0 

Equation (23) has a solution of the form 

Ji" = e-i'j"At (24) 

sin 6 A t  = GAt (25) 

where the discrete frequency c;t is given by 

From equation (25) we note that the stability condition for the leapfrog explicit time 
integrator is 

G A t s 1  (26) 
and that the ratio GIG is given by 

6 sin-'(GAt) 
0 (3At 
-= - 

The frequency ratio 3/6 has been plotted in Figure 3 as a function of 6 A t  and it may be 
noted that the leapfrog explicit scheme has the effect of raising all of the semi-discrete 
frequencies 6. Now, comparing Figure 1 and Figure 3 one notes that compensating effects 
are obtained when combining a diagonal mass representation and an explicit time integra- 
tion. Such effects will be analysed in detail in connection with the multistep explicit 
procedure discussed in this paper. 

One-step explicit procedure 

a second-order accurate convection operator as indicated by equation (12). 

scheme is the familiar requirement 

The one-step procedure corresponds to the usual diagonal mass representation and yields 

In view of equations (26) and (10) with r = 0 ,  the stability condition for the leapfrog 

C = uAt/h < 1 (28) 
where C is the Courant number. 
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Figure 3. Frequency response for the implicit trapezoidal rule (1) and for 
the leapfrog explicit scheme (2) 

From equations (27) and (10) with P = 0, the ratio of the discrete frequency 6 to the exact 
frequency w is given by 

One immediately notes from equation (29) that if the Courant number C is chosen as unity, 
the errors introduced by spatial discretization and numerical time integration exactly 
compensate and an exact frequency response is obtained for all wavelengths. However, in 
most practical situations it is not possible to operate at exactly the critical time step and the 
frequency response for lower values of the Courant number must be considered. The ratio 
c;i /ci~ in equation (29) has been plotted in Figure 4 as a function of the dimensionless wave 
number p for several values of the Courant number C. It appears that the strong frequency 
depression introduced by the diagonal mass representation cannot be adequately compen- 
sated by the opposite effect introduced by explicit time integration, unless the Courant 
number is taken very close to unity. The poor performances of explicit schemes based on 
simple mass lumping are confirmed by numerical experiments in one and two dimensions. 
Figure 5 shows results for the pure advection of a Gaussian wave in one dimension. The 
Courant number was varied between 0.2 and 0.8 and even for the largest value, the 
numerical answer is characterized by an excessive phase error. Figure 6 presents results for 
the standard problem’-’ of the advection of a concentration cone in a pure rotation flow 
field. The exact solution (Figure 6(a)) consists of a rigid rotation of the cone about the centre 
of the mesh and it is noted that the numerical solution obtained on a uniform (30 x 30) mesh 
of bilinear elements exhibits a rather important phase error after one revolution of the cone 
(Figure 6(b)). The Courant number urnax. At/h was approximately 1.0, corresponding to a full 
360-degree rotation of the cone in 100 time steps. 
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Figure 4. Ratio of computed frequency to exact frequency versus nondimensional wave 
number for leapfrog explicit time integration and diagonal mass representation. C is the 

Courant number 

Two-step explicit procedure 

As shown by equation (16), the two-step explicit procedure yields a fourth-order accurate 
convection operator and the stability condition for the leapfrog scheme is obtained from 
equations (26) and (20) in the form 

uAt 
h (30) GAt =- . Max ($ sin p-&sin 2p)G 1 

The corresponding limitation on the Courant number is found to be 

uAt 
h 

C =---S 0.729 

To look at the effect on frequency response of combining the leapfrog scheme and a two-step 
diagonal mass representation, we consider the ratio of the discrete frequency 6 to the exact 
frequency o as obtained from equations (27) and (20): 

6 
0 C. P 

sin-' [C($ sin p -& sin 2p)] -= 

It is noted from Figure 7 that the ratio &/& becomes larger than unity for intermediate 
wavelengths if the Courant number is taken above a threshold value which is C-0.4. It 
follows that for optimal accuracy the fourth-order convection scheme should be operated at 
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Figure 6. Advection of a concentration cone in a pure rotation flow field: results after cne revolution. (a) exact 
solution; (b) diagonal mass representation (C = 1.0); (c) intermediate convection scheme in equation (35) 

(C = 0.6); (d) fourth-order convection scheme (C = 0.4). C is the maximum Courant number 

approximately the above value of the Courant number. This is confirmed by numerical 
experiments on the pure advection of a Gaussian wave as illustrated in Figure 8(a). 

Three -step explicit procedure 

As indicated by equation (19), the three-step explicit procedure produces a sixth-order 
accurate convection operator and the stability condition for the leapfrog time integrator 
derived from equations (26) and (21) is found to be 

uAt 
h 

C=---  S0.631 (33) 

The ratio of the discrete frequency to the exact frequency is obtained from equations (27) 
and (21) in the form 

G 

w C -  P 
sin-' [ C($ sin p - & sin 2 p  + & sin 3 p ) l  -= (34) 
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Figure 7. Ratio of computed frequency to exact frequency versus nondimensional wave 
number for leapfrog explicit time integrator and fourth-order convection scheme. C is 

the Courant number 
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Figure 8. Pure advection of a Gaussian wave in one dimension: fa) fourth-order 
convection scheme and leapfrog integrator with C = 0.4; (b) sixth-order convection 
scheme and leapfrog integrator with C = 0-25; (c) intermediate convection scheme in 

equation (35) and leapfrog integrator with C = 0.6 
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As shown in Figure 9, optimal accuracy is now obtained for a Courant number C = 0.25 and 
this is confirmed in Figure 8(b) where results are shown for the one-dimensional advection of 
a Gaussian wave. 

A SCHEME WITH INTERMEDIATE SPATIAL ACCURACY 

The following conclusions do arise from the discussion in the previous section: 
- The usual diagonal mass representation produces a deep frequency depression that cannot 
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Figure 9. Ratio of computed frequency to exact frequency versus nondimensional wave 
number for leapfrog explicit time integrator and sixth-order convection scheme. C is the 

Courant number 

be compensated by the opposite effect introduced by explicit time integration, even if 
relatively large values of the Courant number are employed. 
- On the other hand, the higher-order convection schemes reduce the frequency depression 
to such an extent that, when combined with an explicit time integrator, this must be operated 
at rather small values of the Courant number to avoid an excessive phase lead for signals of 
intermediate wavelengths. 

In these conditions, it appears that numerical results of acceptable accuracy could be 
produced on using larger time steps than permitted with the higher-order convection 
schemes if a scheme were devised with an accuracy intermediate between that of the second 
and the fourth-order operators. Consider for example6 the intermediate scheme obtained on 
taking the arithmetic mean of the first two approximations (12) and (14), i.e. with a = 0.5 in 
equation (15): 

The resulting ratio of semi-discrete frequency i3 to exact frequency o is shown in Figure 1 
and the ratio of discrete frequency C;, to exact frequency is plotted in Figure 10. It is seen 
that the intermediate scheme (35) behaves optimally when operated at a Courant number 
C = 0-6 and this is confirmed numerically in Figure 8(c) for the pure advection of a Gaussian 
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Figure 10. Ratio of computed frequency to exact frequency versus nondimensional wave 
number for leapfrog explicit time integrator and intermediate convection scheme in equation 

( 3 9 ,  C is the Courant number 

wave. The stability condition for the leapfrog scheme is now 

C 0.785 (36) 

In order to illustrate the extent of improvement in accuracy obtained on using the multistep 
explicit procedure for solving two-dimensional problems, we have treated the concentration 
cone problem on a uniform (30x30) mesh of bilinear elements. The results obtained with 
the intermediate scheme (35) are displayed in Figure 6(c); the Courant number u,. At/h 
was approximately 0.6, corresponding to a full 360-degree rotation of the cone in 160 time 
steps. 

Another calculation was made with the fourth-order convection scheme (16) operated at a 
Courant number of 0.4, corresponding to a full 360-degree rotation in 240 time steps. The 
results are displayed in Figure 6(d). With respect to the solution obtained with the usual mass 
lumping process, Figure 6(b), one notes that the amplitude of the trailing waves and the 
overall phase error have been considerably reduced in both higher-order calculations. 

THE EXPLICIT/IMPLICIT QUESTION 

Explicit time integration schemes do suffer from rather severe stability limitations but lead to 
an extremely simple computer program architecture. On the other hand, implicit methods 
are often unconditionally stable, but their algorithmic complexity may be a serious limitation, 
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especially in the presence of nonsymmetric and nonlinear convective terms. S o  there are 
good and bad possibilities with both categories of time integrators. 

To further illustrate this point, consider the frequency response of the implicit trapezoidal 
rule 

applied to equation (6b) with ,!3 = -iG. The result is 

(37) 

Equation (38) has a solution of the form indicated in equation (24) and the discrete 
frequency d is now given by 

GAt 
tgdAt= (39) 

The ratio d/G is plotted in Figure 3 as a function of GAt and it is noted that the implicit 
scheme (37) always reduces the semi-discrete frequencies G. Since the consistent mass 
representation also depresses the frequencies (Figure l), both time and space discretizations 
have the effect of reducing the frequencies. We are thus in the presence of what Krieg and 
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Figure 11. Ratio of computed frequency to exact frequency versus nondimensional wave 
number for the implicit trapezoidal rule, equation (37), and a consistent mass representa- 

tion. C is the Courant number 
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Key4 call an ill-matched method and a serious degradation in frequency response may be 
expected if large time steps are selected for implicit time integration. This is illustrated in 
Figure 11 where the ratio 310 of the discrete frequency to the exact frequency is plotted as a 
function of the dimensionless wave number p for several values of the Courant number C. It 
is noted that a serious degradation in frequency response does appear if the implicit time 
integration scheme is operated at values of the Courant number larger than one. In these 
conditions, we prefer to take advantage of the algorithmic simplicity of the multistep explicit 
schemes discussed in the present paper. These should be particularly cost-effective in the 
solution of large-scale convection dominated problems in three dimensions. 

CONCLUSIONS 

A simple method has been presented which enables lumped-explicit schemes based on linear 
or multilinear finite elements to be endowed with phase characteristics that are much 
superior to those obtained with the usual diagonal mass representation. For optimal accuracy 
the size of the time increments for explicit time integration must be taken rather small, but it 
was also shown that only slightly larger time steps can be selected in conjunction with an 
implicit time integration scheme if an accurate frequency response is desired. It is therefore 
concluded that there may be good reasons for using explicit finite element algorithms in the 
numerical solution of convection dominated problems. 
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